Speaking the Truth
March 27th, 2017
Speaking the Truth
The Universe contains Things
Things have Attributes
From “Symbolic Logic” by Lewis Carroll
One Thing may have many Attributes, and one Attribute may belong to many Things
A phrase stating if a Thing has (or hasn’t) an Attribute
Predicates are either TRUE or FALSE. That is called the truth value of the predicate
Abstracting a little (to make it general), we can say that
We can combine simple predicates to make complex phrases that can be either TRUE or FALSE
Let \(P(x)\) and \(Q(y)\) be two predicates. The complex predicate \(P(x)\text{ AND }Q(y)\) has a truth value depending on the truth values of \(P(x)\) and \(Q(y)\). We can see it in a truth table
\(P(x)\) | \(Q(y)\) | \(P(x)\) AND \(Q(y)\) |
---|---|---|
TRUE | TRUE | TRUE |
TRUE | FALSE | FALSE |
FALSE | TRUE | FALSE |
FALSE | FALSE | FALSE |
\(P(x)\) | \(Q(y)\) | \(P(x)\) OR \(Q(y)\) |
---|---|---|
TRUE | TRUE | TRUE |
TRUE | FALSE | TRUE |
FALSE | TRUE | TRUE |
FALSE | FALSE | FALSE |
Notice that this is an Inclusive OR
\(P(x)\) | \(Q(y)\) | \(P(x)\) XOR \(Q(y)\) |
---|---|---|
TRUE | TRUE | FALSE |
TRUE | FALSE | TRUE |
FALSE | TRUE | TRUE |
FALSE | FALSE | FALSE |
Now the result if FALSE if both \(P(x)\) and \(Q(y)\) are TRUE at the same time
This rule applies to a single predicate \(P(x)\)
\(P(x)\) | NOT \(P(x)\) |
---|---|
TRUE | FALSE |
FALSE | TRUE |
We can easily combine all the previous operations
We use parenthesis to avoid ambiguity. For example
Two predicates are equivalent when they have the same truth table
\(P(x)\) | \(Q(y)\) | \(P(x)\) AND \(Q(y)\) | \(Q(y)\) AND \(P(x)\) |
---|---|---|---|
TRUE | TRUE | TRUE | TRUE |
TRUE | FALSE | FALSE | FALSE |
FALSE | TRUE | FALSE | FALSE |
FALSE | FALSE | FALSE | FALSE |
For AND and OR, the order is not important
Let’s compare the two interpretations
\(P(x)\) | \(Q(y)\) | NOT (\(P(x)\) AND \(Q(y)\)) | (NOT \(P(x)\)) AND \(Q(y)\) |
---|---|---|---|
TRUE | TRUE | FALSE | FALSE |
TRUE | FALSE | TRUE | FALSE |
FALSE | TRUE | TRUE | TRUE |
FALSE | FALSE | TRUE | FALSE |
They are different, so parenthesis are important
\(P(x)\) | \(Q(y)\) | NOT (\(P(x)\) AND \(Q(y)\)) | (NOT \(P(x)\)) OR (NOT \(Q(y)\)) |
---|---|---|---|
TRUE | TRUE | FALSE | FALSE |
TRUE | FALSE | TRUE | TRUE |
FALSE | TRUE | TRUE | TRUE |
FALSE | FALSE | TRUE | TRUE |
Negation of AND is the OR of negations
\(P(x)\) | \(Q(y)\) | NOT (\(P(x)\) OR \(Q(y)\)) | (NOT \(P(x)\)) AND (NOT \(Q(y)\)) |
---|---|---|---|
TRUE | TRUE | FALSE | FALSE |
TRUE | FALSE | FALSE | FALSE |
FALSE | TRUE | FALSE | FALSE |
FALSE | FALSE | TRUE | TRUE |
Negation of OR is the AND of negations
When it is true that “IF \(P(x)\) THEN \(Q(y)\)”?
\(P(x)\) | \(Q(y)\) | IF \(P(x)\) THEN \(Q(y)\) |
---|---|---|
TRUE | TRUE | TRUE |
TRUE | FALSE | FALSE |
FALSE | TRUE | TRUE |
FALSE | FALSE | TRUE |
From the list of questions produced in Homework 2 (and any new questions you have)
The question “why?” can have two types of answers