- Plausibility should be a real number
- Qualitative Correspondence with common sense
- Consistency
May 11, 2018
There are two ways to see if the compound predicate \(A\) AND \(B\) is true, given \(Z\)
Both ways must be equivalent since \((A\wedge B)\Leftrightarrow (B\wedge A)\)
The plausibility of \((A\wedge B\vert Z)\) depends on the predicates
Thus, there must be a function \(F:\mathbb R^2\mapsto\mathbb R\) such that
They should be the same since \((A\wedge B)\Leftrightarrow (B\wedge A)\)
Jaynes proves that, under those conditions, there must be at least one function \(w:\mathbb R\mapsto\mathbb R\) such that
This is called multiplication rule
Notice that the theorem only proves the existence of \(w(.)\), but it does not tell us how to find it
Moreover, it does not even say if \(w(.)\) is unique
In fact, it is not unique. There are many possible \(w(.)\)
And all have to follow the multiplication rule
If \(B\) and \(Z\) are not contradictory, and \(Z\Rightarrow\ A\), then
We will replace these values in the multiplication formula:
\[w(A\wedge B\vert Z) = w(B\vert Z)\cdot w(A\vert B\wedge Z)\]
After we replace them, we get
\[w(B\vert Z)= w(B\vert Z)\cdot w(A\vert Z) \quad\forall B\]
Therefore, if \(A\vert Z\) is true, then \(w(A\vert Z)=1\)
If \(B\) and \(Z\) are not contradictory, and \(Z\Rightarrow\neg A\), then
Using these facts in the multiplication formula
\[w(A\wedge B\vert Z) = w(B\vert Z)\cdot w(A\vert B\wedge Z)\]
we get
\[w(A\vert Z)= w(B\vert Z)\cdot w(A\vert Z)\quad\forall B\]
Therefore, if \(A\vert Z\) is false, then \(w(A\vert Z)=0\) or \(w(A\vert Z)=\infty\)
Naturally, the plausibility of \((\neg A\vert Z)\) depends on the plausibility of \((A\vert Z)\). So there must be a function \(S:\mathbb R\mapsto\mathbb R\) such that
\[w(\neg A\vert Z)=S(w(A\vert Z))\]
In particular \(S(0)=1\) and \(S(1)=0\).
Since \(\neg (\neg A)=A\) we must have \(w(A\vert Z)=S(S(w(A\vert Z)))\).
Jaynes proves that the only possible solutions are of the form
\[S(x)=(1-x^m)^{1/m}\]
for any \(m>0\). Therefore
\[w(\neg A\vert Z)=S(w(A\vert Z))=(1-w(A\vert Z)^m)^{1/m}\]
and thus
\[w(A\vert Z)^m+ w(\neg A\vert Z)^m=1\]
The original product rule is
\[w(A\wedge B\vert Z) = w(A\vert Z)\cdot w(B\vert A\wedge Z)\]
If that is true, then we can also write
\[w(A\wedge B\vert Z)^m = w(A\vert Z)^m\cdot w(B\vert A\wedge Z)^m\]
So we made all rules depending only on \(w(.)^m\)
Instead of writing \(w(A\vert Z)^m\) we will write \(\Pr(A\vert Z)\)
We call it Probability of \(A\) given \(Z\). Its rules are:
Notice that most books write \(\Pr(A)\) instead of \(\Pr(A\vert Z)\). We prefer to make the context \(Z\) explicit.
It is easy to see that if \(Z\Rightarrow A\) then \(\Pr(\neg A\vert Z)=0\)
If \(\Pr(B\vert A\wedge Z)=\Pr(B\vert Z)\) then we say that \(B\) is independent of \(A\) given \(Z\)
In that case \(\Pr(A\wedge B\vert Z) = \Pr(A\vert Z)\cdot \Pr(B\vert Z)\)
Therefore we also have that \(A\) is independent of \(B\) given \(Z\)
Since \[\Pr(A\wedge B\vert Z) = \Pr(A\vert Z)\cdot \Pr(B\vert A\wedge Z) = \Pr(B\vert Z)\cdot \Pr(A\vert B\wedge Z)\] we can write \[\Pr(B\vert A\wedge Z) = \frac{\Pr(B\vert Z)\cdot \Pr(A\vert B\wedge Z)}{\Pr(A\vert Z)}\] except, of course, when \(\Pr(A\vert Z)=0\)
\[\begin{aligned} \Pr(A\vee B\vert Z) &= 1- \Pr(\neg A\wedge \neg B\vert Z)\\ &=1-\Pr(\neg A\vert Z)\Pr(\neg B\vert \neg A\wedge Z)\\ &=1-\Pr(\neg A\vert Z)\left(1-\Pr(B\vert \neg A\wedge Z)\right)\\ &=1-\Pr(\neg A\vert Z)+\Pr(\neg A\vert Z)\Pr(B\vert \neg A\wedge Z)\\ &=\Pr(A\vert Z)+\Pr(\neg A\wedge B\vert Z)\\ &=\Pr(A\vert Z)+\Pr(B\vert Z)\Pr(\neg A\vert B\wedge Z)\\ &=\Pr(A\vert Z)+\Pr(B\vert Z)(1-\Pr(A\vert B\wedge Z))\\ &=\Pr(A\vert Z)+\Pr(B\vert Z)-\Pr(A\vert B\wedge Z)\Pr(B\vert Z)\\ &=\Pr(A\vert Z)+\Pr(B\vert Z)-\Pr(A\wedge B\vert Z) \end{aligned}\]