December 3, 2019

Coils and Rubber bands

  • Coils and rubber bands have a natural size
  • If you apply a force to them, they expand
  • What is the relation between the expansion and the force?

Results

id rep N x1 x2 y1 y2 src
1 a 1 360 461.0 478.0 600.0 andres
2 a 1 360 470.0 489.0 630.0 andres
3 a 1 350 461.0 480.0 620.0 andres
4 a 1 350 470.0 490.0 650.0 andres
5 a 1 350 451.0 470.0 590.0 andres
1 b 1 360 460.0 479.0 600.0 andres
2 b 1 360 470.0 488.0 630.0 andres
3 b 1 350 460.0 479.0 620.0 andres
4 b 1 350 470.0 489.0 650.0 andres
5 b 1 350 450.0 470.0 590.0 andres
1 c 1 360 460.0 479.0 600.0 andres
2 c 1 360 470.0 490.0 630.0 andres
3 c 1 350 460.0 479.0 620.0 andres
4 c 1 350 469.0 488.0 650.0 andres
5 c 1 350 450.0 469.0 590.0 andres
1 a 2 360 475.0 493.0 601.0 andres
2 a 2 360 493.0 512.0 630.0 andres
3 a 2 350 490.0 508.0 620.0 andres
4 a 2 350 502.0 520.0 650.0 andres
5 a 2 350 459.0 477.0 590.0 andres
1 b 2 360 495.0 492.0 600.0 andres
2 b 2 350 483.0 501.0 620.0 andres
3 b 2 330 463.0 481.0 600.0 andres
4 b 2 330 481.0 498.0 630.0 andres
5 b 2 340 452.0 472.0 580.0 andres
1 c 2 360 475.0 493.0 600.0 andres
2 c 2 350 483.0 502.0 620.0 andres
3 c 2 330 464.0 483.0 600.0 andres
4 c 2 330 481.0 500.0 630.0 andres
5 c 2 340 455.0 473.0 580.0 andres
1 a 1 40 125.0 143.0 225.0 185a34
2 a 1 50 155.0 175.0 280.0 185a34
3 a 1 40 195.0 215.0 375.0 185a34
4 a 1 10 192.0 212.0 400.0 185a34
5 a 1 110 258.0 278.0 435.0 185a34
1 b 1 40 125.0 143.0 225.0 185a34
2 b 1 50 156.0 174.0 280.0 185a34
3 b 1 40 156.0 175.0 375.0 185a34
4 b 1 10 238.0 258.0 400.0 185a34
5 b 1 110 261.0 281.0 435.0 185a34
1 c 1 40 125.0 143.0 225.0 185a34
2 c 1 50 155.0 174.0 280.0 185a34
3 c 1 40 196.0 214.0 375.0 185a34
4 c 1 10 193.0 212.0 400.0 185a34
5 c 1 110 260.0 279.0 435.0 185a34
1 d 1 40 124.0 143.0 225.0 185a34
2 d 1 50 156.0 174.0 280.0 185a34
3 d 1 40 195.0 214.0 375.0 185a34
4 d 1 10 193.0 212.0 400.0 185a34
5 d 1 110 261.0 279.0 425.0 185a34
1 a 2 40 130.0 145.0 225.0 185a34
2 a 2 50 167.0 186.0 280.0 185a34
3 a 2 40 234.0 252.0 375.0 185a34
4 a 2 10 242.0 260.0 400.0 185a34
5 a 2 110 299.0 313.0 435.0 185a34
1 b 2 40 128.0 145.0 225.0 185a34
2 b 2 50 167.0 185.0 280.0 185a34
3 b 2 40 235.0 254.0 375.0 185a34
4 b 2 10 243.0 260.0 400.0 185a34
5 b 2 110 299.0 314.0 435.0 185a34
1 c 2 40 130.0 144.0 225.0 185a34
2 c 2 50 168.0 185.0 280.0 185a34
3 c 2 40 235.0 254.0 375.0 185a34
4 c 2 10 242.0 261.0 400.0 185a34
5 c 2 110 298.0 313.0 435.0 185a34
1 d 2 40 130.0 144.0 225.0 185a34
2 d 2 50 167.0 186.0 280.0 185a34
3 d 2 40 235.0 253.0 375.0 185a34
4 d 2 10 243.0 260.0 400.0 185a34
5 s 2 110 298.0 313.0 435.0 185a34
1 a 1 171 180.0 182.0 188.0 1e4a6e
2 a 1 184 176.0 181.0 208.0 1e4a6e
3 a 1 188 195.0 191.0 212.0 1e4a6e
5 a 1 179 180.0 177.0 205.0 1e4a6e
1 b 2 191 195.0 202.0 199.0 1e4a6e
2 b 2 190 192.0 189.0 205.0 1e4a6e
3 b 2 191 194.0 207.0 214.0 1e4a6e
4 b 2 210 208.0 210.0 222.0 1e4a6e
5 b 2 220 217.0 205.0 206.0 1e4a6e
1 c 2 191 195.0 202.0 211.0 1e4a6e
2 c 2 190 192.0 189.0 202.0 1e4a6e
3 c 2 191 194.0 207.0 205.0 1e4a6e
4 c 2 210 208.0 210.0 212.0 1e4a6e
5 c 2 220 217.0 205.0 207.0 1e4a6e
1 a 2 40 15.7 13.0 11.3 3b2b4b
2 a 2 50 21.3 15.0 13.7 3b2b4b
3 a 2 60 25.0 18.8 16.2 3b2b4b
4 a 2 70 28.8 21.8 19.4 3b2b4b
5 a 2 80 32.2 25.2 22.8 3b2b4b
1 b 2 40 15.7 12.9 11.4 3b2b4b
2 b 2 50 20.7 15.7 13.6 3b2b4b
3 b 2 60 24.8 18.5 16.6 3b2b4b
4 b 2 70 28.9 21.7 19.2 3b2b4b
5 b 2 80 32.1 25.3 22.6 3b2b4b
1 c 2 40 15.8 12.9 11.3 3b2b4b
2 c 2 50 20.5 15.7 13.8 3b2b4b
3 c 2 60 24.3 19.3 16.4 3b2b4b
4 c 2 70 28.7 21.9 19.4 3b2b4b
5 c 2 80 32.3 25.3 22.4 3b2b4b
1 a 1 150 255.0 275.0 370.0 6ed952
2 a 1 100 200.0 220.0 300.0 6ed952
3 a 1 200 290.0 310.0 396.0 6ed952
4 a 1 210 305.0 325.0 410.0 6ed952
5 a 1 150 274.0 293.0 400.0 6ed952
1 b 1 150 256.0 274.0 370.0 6ed952
2 b 1 100 192.0 210.0 300.0 6ed952
3 b 1 200 290.0 309.0 396.0 6ed952
4 b 1 210 303.0 321.0 410.0 6ed952
5 b 1 150 275.0 293.0 400.0 6ed952
1 c 1 150 256.0 274.0 370.0 6ed952
2 c 1 100 192.0 210.0 300.0 6ed952
3 c 1 200 290.0 309.0 396.0 6ed952
4 c 1 210 303.0 321.0 410.0 6ed952
5 c 1 150 275.0 293.0 400.0 6ed952
1 a 2 150 260.0 282.0 370.0 6ed952
2 a 2 100 197.0 217.0 300.0 6ed952
3 a 2 200 294.0 314.0 396.0 6ed952
4 a 2 210 307.0 326.0 410.0 6ed952
5 a 2 150 288.0 306.0 400.0 6ed952
1 b 2 150 263.0 282.0 370.0 6ed952
2 b 2 100 197.0 217.0 300.0 6ed952
3 b 2 200 294.0 314.0 396.0 6ed952
4 b 2 210 307.0 326.0 410.0 6ed952
5 b 2 150 288.0 306.0 400.0 6ed952
1 c 2 150 264.0 282.0 370.0 6ed952
2 c 2 100 197.0 217.0 300.0 6ed952
3 c 2 200 294.0 314.0 396.0 6ed952
4 c 2 210 307.0 326.0 410.0 6ed952
5 c 2 150 288.0 306.0 400.0 6ed952
1 a 1 250 346.0 370.0 475.0 7183bd
2 a 1 250 365.0 385.0 495.0 7183bd
3 a 1 250 378.0 398.0 515.0 7183bd
4 a 1 250 365.0 384.0 495.0 7183bd
5 a 1 250 359.0 378.0 475.0 7183bd
1 b 1 250 349.0 369.0 475.0 7183bd
2 b 1 250 350.0 370.0 495.0 7183bd
3 b 1 250 365.0 385.0 515.0 7183bd
4 b 1 250 357.0 397.0 495.0 7183bd
5 b 1 250 349.0 369.0 475.0 7183bd
1 c 1 250 348.0 368.0 475.0 7183bd
2 c 1 250 356.0 376.0 495.0 7183bd
3 c 1 250 364.0 384.0 515.0 7183bd
4 c 1 250 356.0 376.0 495.0 7183bd
7 c 1 250 350.0 370.0 475.0 7183bd
1 a 2 250 365.0 385.0 475.0 7183bd
2 a 2 250 381.0 401.0 495.0 7183bd
3 a 2 250 399.0 419.0 515.0 7183bd
4 a 2 250 397.0 417.0 495.0 7183bd
5 a 2 250 366.0 386.0 475.0 7183bd
1 b 2 250 364.0 381.0 475.0 7183bd
2 b 2 250 376.0 396.0 495.0 7183bd
3 b 2 250 393.0 413.0 515.0 7183bd
4 b 2 250 378.0 397.0 495.0 7183bd
5 b 2 250 360.0 380.0 475.0 7183bd
1 c 2 250 366.0 386.0 475.0 7183bd
2 c 2 250 382.0 402.0 495.0 7183bd
3 c 2 250 392.0 412.0 515.0 7183bd
4 c 2 250 381.0 401.0 495.0 7183bd
5 c 2 250 365.0 385.0 475.0 7183bd
1 a 1 355 356.0 372.0 416.0 e3459b
2 a 1 384 450.0 380.0 382.0 e3459b
3 a 1 420 446.0 740.0 775.0 e3459b
4 a 1 434 442.0 775.0 670.0 e3459b
5 a 1 425 460.0 755.0 759.0 e3459b
1 b 1 256 290.0 632.0 705.0 e3459b
2 b 1 295 306.0 630.0 650.0 e3459b
3 b 1 285 296.0 630.0 660.0 e3459b
4 b 1 260 280.0 650.0 680.0 e3459b
5 b 1 280 350.0 700.0 720.0 e3459b
1 c 1 300 290.0 725.0 733.0 e3459b

Add the missing columns

rubber$d1 <- rubber$x2-rubber$x1
rubber$d2 <- rubber$y2-rubber$y1
rubber$mid <- rubber$y1-rubber$x2
id rep N x1 x2 y1 y2 src d1 d2 mid
1 a 1 360 461 478 600 andres 101 122 17
2 a 1 360 470 489 630 andres 110 141 19
3 a 1 350 461 480 620 andres 111 140 19
4 a 1 350 470 490 650 andres 120 160 20
5 a 1 350 451 470 590 andres 101 120 19
1 b 1 360 460 479 600 andres 100 121 19

Sample case (src=="185a34" & N==2)

Best-fit line

When data seems to be in a straight line, we can find that line using a linear model

model <- lm(d2 ~ d1, data=rubber,
            subset=(src=="185a34" & N==1))
model
Call:
lm(formula = d2 ~ d1, data = rubber, subset = (src == "185a34" & 
    N == 1))

Coefficients:
(Intercept)           d1  
    35.4505       0.7514  

What are the coefficients?

Remember that straight lines can be represented by the formula \[\text{d_2}=A+B\cdot \text{d_1}\] The coefficient \(A\) is the value where the line intercepts the vertical axis

The coefficient \(B\) is how much length goes up when n_marbles increases. This is called slope

In our case \(A\) and \(B\) are

(Intercept)          d1 
 35.4504763   0.7513757 

Robert Hooke said it first

Robert Hooke (1635–1703) was an English natural philosopher, architect and polymath.

In 1660, Hooke discovered the law of elasticity which describes the linear variation of tension with extension

“The extension is proportional to the force”

Robert Hooke

Natural philosophy was the study of nature and the physical universe that was dominant before the development of modern science

Polymath (from Greek “having learned much”) is a person whose expertise spans a significant number of different subject areas

Biologist. Hooke used the microscope and was the fists to use the term cell for describing biological organisms.

How do we model a coil?

The essence of the coil is:

  • It has a natural length \(L\)
  • If we change the length by \(x\), it pulls with a force \[\mathrm{force}(x)= K \cdot (L-x)\]