Journal of the Royal Statistical Society and American Statistical Association
Erika Check Hayden, Weak statistical standards implicated in scientific irreproducibility Nature, 11 November 2013
Open Science Collaboration, Estimating the reproducibility of psychological science. Science 28 Aug 2015: Vol. 349, Issue 6251, aac4716 DOI: 10.1126/science.aac4716
Replications can cause distorted belief in scientific progress Behavioral and Brain Sciences, Volume 41, 2018, e122 DOI: https://doi.org/10.1017/S0140525X18000584. Published online by Cambridge University Press: 27 July 2018
Reproducibility of Scientific Results Stanford Encyclopedia of Philosophy
T.D. Stanley, Evan C. Carter and Hristos Doucouliagos What Meta-Analyses Reveal about the Replicability of Psychological Research Deakin Laboratory for the Meta-Analysis of Research, Working Paper, November 2017
Silas Boye Nissen, Tali Magidson, Kevin Gross, Carl T Bergstrom Research: Publication bias and the canonization of false facts eLife Dec 20, 2016;5:e21451 DOI: 10.7554/eLife.21451
\[ \begin{aligned} y_1 & = x_{1,1}\, \beta_1 + x_{1,2}\, \beta_2\\ y_2 & = x_{2,1}\, \beta_1 + x_{2,2}\, \beta_2 \end{aligned} \]
\[ \begin{aligned} z_1 & = w_{1,1}\, y_1 + w_{1,2}\, y_2\\ z_2 & = w_{2,1}\, y_1 + w_{2,2}\, y_2 \end{aligned} \] We used \(x_{ij}\) for the coefficients of the first case, and \(w_{ij}\) for the second case.
\[ \begin{aligned} z_1 & = w_{1,1}(x_{1,1}\, \beta_1+x_{1,2}\, \beta_2)+w_{1,2}(x_{2,1}\, \beta_1 + x_{2,2}\, \beta_2)\\ z_2 & = w_{2,1}(x_{1,1}\, \beta_1+x_{1,2}\, \beta_2)+w_{2,2}(x_{2,1}\, \beta_1 + x_{2,2}\, \beta_2) \end{aligned} \]
We get \[ \begin{aligned} z_1 & = (w_{1,1}x_{1,1}+w_{1,2}x_{2,1})\beta_1+(w_{1,1}x_{1,2}+w_{1,2}x_{2,2})\beta_2\\ z_2 & = (w_{2,1}x_{1,1}+w_{2,2}x_{2,1})\beta_1+(w_{2,1}x_{1,2}+w_{2,2}x_{2,2})\beta_2 \end{aligned} \] so we can go directly from \((\beta_1,\beta_2)\) to \((z_1,z_2)\) with the same kind of formula.
\[ \begin{aligned} z_1 & = c_{1,1}\, \beta_1+ c_{1,2}\, \beta_2\\ z_2 & = c_{2,1}\, \beta_1+ c_{2,2}\, \beta_2 \end{aligned} \] we will have the following equivalences
\[ \begin{aligned} c_{1,1} & =w_{1,1}\, x_{1,1}+w_{1,2}\, x_{2,1} \\ c_{1,2} & =w_{1,1}\, x_{1,2}+w_{1,2}\, x_{2,2} \\ c_{2,1} & =w_{2,1}\, x_{1,1}+w_{2,2}\, x_{2,1} \\ c_{2,2} & =w_{2,1}\, x_{1,2}+w_{2,2}\, x_{2,2} \end{aligned} \]
This set of equivalences is usually abbreviated with the formula \[c_{i,j} = \sum_k w_{i,k} x_{k,j}\]
There are so many numbers that is hard to follow what is exactly happening.
Fortunately, we can use the intrinsic structure of the equations to write them more clearly.
\[
\begin{aligned}
y_1 & = x_{1,1}\,\beta_1 + x_{1,2}\,\beta_2\\
y_2 & = x_{2,1}\,\beta_1 + x_{2,2}\,\beta_2
\end{aligned}
\] we can see that the first part of the right hand —between the
=
and the +
signs— is always multiplied by
\(\beta_1\),
and the second part —after the +
sign— is always multiplied
by \(\beta_2\).
We neither need the +
sign. Instead we can write \[
\begin{pmatrix}
y_1 \\ y_2
\end{pmatrix}
=
\begin{pmatrix}
x_{1,1} & x_{1,2}\\
x_{2,1} & x_{2,2}
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\ \beta_2
\end{pmatrix}
\]
We can therefore write the equations for \(z_1,z_2\) as \[ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} w_{1,1} & w_{1,2}\\ w_{2,1} & w_{2,2} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \] and replacing \(y_1,y_2\), we have \[ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} w_{1,1} & w_{1,2}\\ w_{2,1} & w_{2,2} \end{pmatrix} \begin{pmatrix} x_{1,1} & x_{1,2}\\ x_{2,1} & x_{2,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \] which is a formula that connects \(\beta_1,\beta_2\) and \(z_1,z_2\),
\[ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} c_{1,1} & c_{1,2}\\ c_{2,1} & c_{2,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \]
Therefore, we are allowed to write \[ \begin{pmatrix} c_{1,1} & c_{1,2}\\ c_{2,1} & c_{2,2} \end{pmatrix} = \begin{pmatrix} w_{1,1} & w_{1,2}\\ w_{2,1} & w_{2,2} \end{pmatrix} \begin{pmatrix} x_{1,1} & x_{1,2}\\ x_{2,1} & x_{2,2} \end{pmatrix} \]
Giving names to the matrices. Let’s call \[ \begin{aligned} \mathbf A & = \begin{pmatrix} x_{1,1} & x_{1,2}\\ x_{2,1} & x_{2,2} \end{pmatrix} \\ \mathbf B & = \begin{pmatrix} w_{1,1} & w_{1,2}\\ w_{2,1} & w_{2,2} \end{pmatrix}\\ \mathbf C & = \begin{pmatrix} c_{1,1} & c_{1,2}\\ c_{2,1} & c_{2,2} \end{pmatrix} \end{aligned} \] and now we can write \[\mathbf C =\mathbf B\mathbf A \]
\[y= \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} \]
The matrix \(\mathbf X\) transforms the vector \(\mathbf \beta=(\beta_1, \beta_2)\) into the vector \(\mathbf y=(y_1, y_2)\) \[ \begin{aligned} y_1 & = x_{1,1}\, \beta_1 + x_{1,2}\, \beta_2\\ y_2 & = x_{2,1}\, \beta_1 + x_{2,2}\, \beta_2 \end{aligned} \] which can be written as \[ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2}\\ x_{2,1} & x_{2,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \]
we get \[\mathbf y = \mathbf{X\beta}\]
Therefore, when we multiply a matrix \(\mathbf X\) with a column vector \(\mathbf \beta\), we get a new vector \(\mathbf y\) with the following values \[y_i = \sum_k x_{i,k} x_k\]
You may have noticed that we did not specify the range of \(k\) in the multiplication formulas. This is intentional. The range is “whatever corresponds”. For the multiplication of two matrices, the condition is
the number of columns of the first matrix must be equal to the number of rows of the second matrix
Therefore, if \(\mathbf A\in\mathbb R^{m\times l}\) and \(\mathbf B\in\mathbb R^{l\times n}\) then \(\mathbf A\mathbf B\in\mathbb R^{m\times n}.\)
the condition is
number of columns of the matrix equal to number of rows of the vector
If \(\mathbf A\in\mathbb R^{m\times n}\) and \(\mathbf x\in\mathbb R^{n}\) then \(\mathbf A\mathbf x\in\mathbb R^{m}.\)
if we take the vectors in \(\mathbb R^{n}\) as matrices in \(\mathbb R^{n\times 1}\)—that is, if the vectors are one-column matrices— then matrix–vector multiplication is the same as matrix–matrix multiplication.
It is easy to see that rectangular matrices can be multiplied only in one way. The multiplication \[\mathbf A_{m\times_l}\mathbf B_{l\times n}\] is valid, but \[\mathbf B_{l\times n}\mathbf A_{m\times_l}\] is not, in general, unless \(n=m.\)
When we work with square matrices, then \(\mathbf A\mathbf B\) and \(\mathbf B\mathbf A\) are valid multiplications.
It is easy to see that, in general, \[\mathbf A\mathbf B\not=\mathbf B\mathbf A\]
Mutation rate is not proportional to time
Multiple substitutions of the same base cannot be observed
GLMTVMNHMSMVDDPLVWATLPYKLFTSLDNIRWSLGAHNICFQNKFLANFFSLGQVLST
GVLVVPNHRSTLDDPLMWGVLPWSMLLRPRLMRWSLGAAELCFTNAVTSSMSSLAQVLAT
GVLVVPNHRSTLDDPLMWGTLPWSMLLRPRLMRWSLGAAELCFTNPVTSMMSSLAQVLAT
GLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPV
So we underestimate the divergence time
Blast hits for Taz1 (Saccharomyces cerevisiae, QHB12384.1) in RefSeq select proteins
We know that \[ℙ(A,B)=ℙ(A)⋅ℙ(B|A)\] Therefore \[ℙ(B|A)=\frac{ℙ(A,B)}{ℙ(A)}\]
Here \(A\) is “initial amino acid is
Valine”
\(B\) is “new amino acid is
Leucine”
(or any other combination of amino acids)
By comparing highly-similar sequences, Margaret Dayhoff determined the frequencies of mutation for each pair of amino-acids in the short term.
This is a matrix, called PAM1 (“Point Accepted Mutations”), representing
\[ℙ(A\text{ at time }t, B\text{ at time }t+1)\]
We can write it as a matrix \[P_1 (A,B) = ℙ(A\text{ at time }t, B\text{ at time }t+1)\]
Dayhoff, Mo, and Rm Schwartz. “A Model of Evolutionary Change in Proteins.”. In Atlas of Protein Sequence and Structure. Washington, DC: National Biomedical Research Foundation, 1978. https://doi.org/10.1.1.145.4315.
Let’s make the matrix of conditional probabilities \[ \begin{aligned} M_1(A,B)=&ℙ( B\text{ at time }t+1|A\text{ at time }t)\\ =& \frac{ℙ(A\text{ at time }t, B\text{ at time }t+1)}{ℙ(A\text{ at time }t)} \end{aligned} \]
We can build this matrix if we know \(ℙ(A\text{ at time }t)\)
We can find that probability by counting the frequency of each amino acid.
\[ℙ(B\text{ at time }t+2|A\text{ at time }t)\]